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Introductory Remarks

HE problem concerning unperturbed motion, i.e., the

two-body problem, has an exact solution that is actually
used also in the computation of an ephemeris without the
calculation of perturbations. This solution is not considered
simple enough because there is no direct connection of the
coordinates with time. Therefore, it is worth while to attempt
to simplify the calculation of ephemerides.

The relative complexity of the solution of the differential
equations of the two-body problem depends on the non-
linearity of the equations. In order to simplify the solution,
it is necessary to eliminate the nonlinearity. From the time
of Gauss, the method of averaging has been used for the
simplification of the equations of motion in celestial mechan-
ics. The averaging was subject to the force function of the
problem. It is shown that it gives the possibility of finding
the secular and long period perturbations. It should be noted
that the question concerning averaging is not so clear as it
sometimes seems. It is sufficient to cite a very simple reason:
If, in the two-body problem, the average value of the force
funetion is obtained with respect to the mean anomaly, then
we shall obtain a constant value, and the approximate dif-
ferential equations with the average force function determine
straight line motion with constant velocity. In the present
article, the linearization of the differential equations of the
two-body problem is considered, being based on a partial
average of the differential equations of motion. The linearity
of the equations is “violated” by the presence of the factor
1/r% in all of the equations; thus the obvious method of
linearization will be the replacement of this factor by its
average value if the motion is considered along an ellipse.

1 The Mean Distance and Mean Function of
Distance

The concept of mean distance presupposes the existence of a
set of distances from which the mean value is formed as one
from the summary of characteristics of all of the set. Under
the mean we shall imply the mathematical expectation of the
distance or its function found according to the rules of the
theory of probability. The concept of the mean distance is
to a certain extent conventional, because it depends both on
the choice of the basic random quantity and on the assump-~
tions about the probability density of this basic quantity.
The semimajor axis of the elliptic orbit is the element usually
called the mean distance.

We shall consider certain methods for the determination of
the mean distance.

a) We shall assume the distance itself for the basic random
quantity, and we shall make an assumption concerning the
law of uniform distribution. Since, in elliptic motion, the
distance takes on values from a(l1 — ¢€) to a(l + e), the
probability density equals 1/(2 ae), and the mean value will
be a.
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b) Motion along an elliptic orbit occurs nonuniformly,
not agreeing with the assumption about the uniform law
of distribution. If the ephemeris is to represent the cal-
culation of the whole period of rotation of the planet around
the sun, then large distances will be met more often than small
distances. Thus it is possible to assume arbitrarily such a
probability density of distances which will grow monotoni-
cally for increases of . We shall make the simplest assump-
tion concerning the linear law of probability density. Con-
sidering the difference fla(l + ¢)] — fla(l — ¢)] = v a
parameter of the problem, we shall obtain the probability
density in the form f(r) = 1/(2 ae) + y(r — a)/2 ae. We
consider the parameter v to be a function of the eccentricity
of the orbit, which it is possible to select so as to obtain the
natural value of the mean in the extreme cases (¢ = 0 or
¢ = 1). The mean value of the distance is determined ac-
cording to the formula

Ff=a-+ vea?/3

Here it is seen that for e = 0 the natural result # = g is ob-
tained. According to the meaning of the problem, ¥ must
have the dimensions of 1/a in order to secure the dimension
of probability density. Taking this into account where v =
1/(ae) we shall obtain 7 = a 4+ ea/3.

This result has a methodical value, hecause it shows that
for the simplest assumptions concerning the probability
density of 7, the mean value of the heliocentric distance is not
equal to a.

It is possible to take a basic random quantity on which dis-
tance depends, to give for this quantity a probability density,
and to determine the mean distance as the mathematical ex-
pectation function of the basic random quantity. The dis-
tance can be considered a function of one of the three com-
monly used anomalies, each of which can be taken for the
auxiliary random quantity. Correspondingly, we shall obtain
three more versions of the mean value of the heliocentric
distance. For each of the versions, it is easy to find, accord-
ing to known rules, the mean value of the function of distance.

¢) Let us assume that all correct directions to the planet
are equiprobable, that is, the true anomaly is uniformly dis-
tributed. We shall determine the mean distance of the func-
tion of the true anomaly for which the given probability
density equals 1/(27). According to known rules, we obtain

f~£ff __
T 2rJ—x1 + ecosv

Qf”_dv_= Vi—e=2b
wJo 1 4 ecosp @ ¢

Here the mean distance determined is less than a.

d) We take for the basic random quantity the eccentric
anomaly and assume equal probability of the values of £ from
0 up to 2w, that is, we consider the probability density equal
to 1/(27). By making use of the known expression of dis-
tance by the eccentric anomaly, we obtain

a 2%
7= —f (1 — e cosE)dE F=a
2 Jo

Noting again the mean value of the factor 1/7® entering in all

~
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differential equations and ‘“‘violating” the nonlinearity, we
obtain

1 1 ™ dE _
<r3> T wad ﬁ (1 — e cosE)?
1 1+ e 1
;""(1——(3—22)?’2= (1-{-362-!-...)(;3
e) It is most natural to consider time as the basic random
quantity, distributed uniformly during the period of rotation
of the planet around the sun. It is much more convenient to
take the mean anomaly instead of time for the basic quantity,
because it takes values from 0 up to 27 for all planets. Conse-
quently, the probability density of quantity M always equals
1/(2m). The distance and its function are expressed by time,
that is, through the mean anomaly by an infinite series. The
coefficients of this series are functions of the eccentricity, also
being represented by infinite series. Thus, for example (1)?

r 1 2
PR — 2 — =T,/
14 ¢ ek§ : klk (ke) coskM

2 142 L(ke) coskM
r k=1 .

where I and I’ are Bessel functions and their derivatives.
The method of averaging, using such series, gives simpler
terms for the series not containing the mean anomaly. We

obtain
- e\ (Ly_1
ra(irg) (5)-a

Comparison with item b shows that the linear law of proba-
bility density with the parameter v = 3/2a may be taken for
the distance, if only the mean distance is required. The mean
value of the square of the heliocentric distance is easily de-
termined by making use of the series (1):

r 2_ i 9 _ e Ik(ke)
(a) =14+ 3 € 4k=1 W coskM

from which we obtain: 72 = a2(1 + 3/2-¢?).

It is possible also to construct analogous infinite series for
other powers of the distance, but they are inconvenient for
the determination of mean values, because the collections of
terms in them which are not dependent on time also represent
infinite series.

We shall apply other methods. The mean anomaly is very
simply expressed through the eccentric anomaly by Kepler’s
equation. This makes it possible to determine easily the
probability density of the eccentric anomaly by the probabil-
ity density of the mean anomaly:

1 — ecosE r
hE) = ——F—""=7—

2m " 27a

Analogously it is possible to determine the probability density
of the distance by the method

fo(r) = r/[2maVater — (a — 1)?]

A U-shaped distribution is obtained. The geometric mean of
the deviations from the perihelion and aphelion distances is
in the denominator. From here the value of the mean dis-
tance found previously is determined easily according to the

formula
_ a(l4e) _ 1,
= 2‘[&(1_8) rfo(r)dr = a(l + 2 e>
The factor 2 must be introduced, because the limits of integra-
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tion correspond to only half of the trajectory. It is still
simpler to consider r a function of £, and for the determination
of the mathematical expectation ¢(r) to calculate the integral

1 27
o ﬂ S[1(1 — e cosE)](1 — e cosE)dE

It is possible to verify all previous means by such a method
and to obtain new expressions:

= a* (1 + 3e* + e . .. (exactly)

£>___Lﬁ__;
) a@2V1i—e ab

1\ 1 1
r) " ad (1 — eir

2 The Simplest Approximation Formula

The semimajor axis of an elliptic orbit also can be considered
the mean distance for certain assumptions (uniform distribu-
tion of distances or eccentric anomalies), although, for these
assumptions, a unit divided by the cube of the distance does
not have the same mean value as a unit divided by the cube of
the semimajor axis. However, for maximum simplicity of the
approximation, =3 may be replaced by a=3. The system of
differential equations is reduced to three independent linear
differential equations of the second order which are easily
solved according to the initial coordinates and their deriva-
tives. Let xo, 4o, 20 be the initial values of the coordinates at
the moment that we assume equal to zero, and let i, 9, 20, be
the components of initial velocity. In the differential equa-
tions we replace the factor k%/a® by the square of the mean
motion (the units are the usual ones in the astronomical
problem) u? and we obtain the solution of all the equations in
the form

8
i

To .
2 cosul + = sinut
M

<2
Il

Yo cosut -+ Yo sinut
u

2 .
Z = z cosut + = sinut
1

If the direction cosines are denoted by P., Py, P,, @., Q,, Q.,
then, by the given elements, referred to epoch &, we find the
coeflicients of the solution according to known formulas (2).
The orbital coordinates are

& = a(cosEy — ¢) 7 = bsinF,

ZTo = szo + Qx‘ﬂo

b = acos ¢

C. = <@> = <ﬁ> (—aP, sinFy + bQ. cosEy)
M To

The quantities yo, 20, Cy, C-: are determined analogously. In
order to put together a representation from the trajectory,
we eliminate time from the equations of motion and obtain
the equation

T ¥y z
Zo Yo 2| =0
c. C, C.

From this equality it is clear that the motion is planar. Since
the initial position and initial velocity are exact, and the ap-
proximated trajectory is general, then the approximated orbit
is situated on one plane with the exact orbit and is tangent to
it at the initial point. For the determination of the form of
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the approximated orbit, we assume that the fundamental
plane of the coordinates Zj coincides with the plane of the
orbit. Eliminating time, we obtain the equation of the orbit:

(O + 1)t = 200, + o] +
(€ + ) = (Com — Cu)?

from which it is seen that the approximated orbit is an ellipse

with the center at the origin of the coordinates, that is, at the.

central point. This approximated orbit differs essentially
from the exact ellipse, the focus of which is located at point of
the center of mass. For the calculation of the semi-axis of the
ellipse, we have the equation

82 — (o2 + yo? + C.2 + CA8 + (Cowo — Coyo)2 = 0
If we make the substitutions
m? = (C. — y0)* + (Cy + 20)*
7% = (Cy — 20)% + (C: + y0)* (m>0, >0

Then the equation serving for the determination of the semi-
axes of the ellipse takes the very simple form

82 — 3(n? + mHS + fs(n? — mH2 = 0

The semi-axes of the ellipse are calculated very simply:

_ nd+m 5 |n—m

=" b="3
and

_2Vum COS&_]n—ml

Tt m T n+4m

If the plane zy does not coincide with the plane of the orbit,
then it is possible to obtain expressions for the semi-axes and
by the well-known methods to determine the plane of the
orbit, ete.

It is evident that the approximate formula obtained is most
suitable, in the sense of smallness of error, in that part of the
orbit where the heliocentric distance is close to the magnitude
of the semimajor axis. This will be for values of the eccentric
anomaly close to 90° or 270°.3

We shall clarify the connection of the exact solution with
the simplest approximate solution. The coordinates of the
planet can be expanded in series according to powers of time.
This expansion is in a form very close to that which is ob-
tained for the approximate solution. Therefore, we find the
mean of our approximate solutions with expansions of the
coordinates in series according to powers of time.

The expansion is identical for all three coordinates, and the
approximate solutions are also of one type. Therefore, it is
possible to limit oneself to a comparison of only one coordinate,
for example, the abscissa. We have for the exact abscissa the
following formula (2): z = 2o'(8) 4+ 2,'G(), in which F(8)
and G(6) are the functions determined, represented by infinite
series according to powers of 6 in which the coefficients con-
tain the cube of the inverse distance and its derivative at the
initial moment. Let 6 = kt, and, if ¢, is taken equal to 0, x’
designates the derivative at the initial moment with respect to
#. We transform the written expression in order to make it
approach the approximate solution. We shall replace k& by
w-a3? and then 6§ = ua®2. The derivative with respect to 6
takes the form zy’ = (xy’/u)-a~%'% and the functions F(6)
and G(6) are transformed to the form

1 a®

F@o) =1 —‘5703(#15)2

3 The attempted replacement of r by r, gave unsatisfactory
results, because it is sufficiently accurate to obtain the coordinates
over only 10 days. Although the distance changes slowly and
smoothly, such changes in the differential equations can result
in a noticeable change in the solution.
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1 g%

!
G(0) = (ua*’” — & el GO

If each series is limited to the first two terms with the same
accuracy, the abscissa is expressed by

1 a? %o 1 a®
— — T 2 0 - = 3
T = [1 3 7o (ut) ] + u l:(#t) 6 0 (ut) ]
We shall expand the cosine and sine in series by powers of the

argument in our approximate formula and also limit ourselves
to the first two terms. We obtain

T =12 [1 - % (ut)ﬁ] + % [(ut) - % (;ut){l

From here the error of the approximate solution with the
accepted aceuracy can be written

_ 1 a® 1 2 a?
-—_ = — —_—— 2 —_— = -— 3
ToE=5 % <1 To3> (u)? + (1 To3> (ud)

It is obvious from this equation that the errors will be small if
the initial moment is chosen so that 7, is approximately equal
to a. The difference 1 — a®r~% can be estimated easily by
the maximum and minimum values of r in elliptic motion:
<3¢+ 6e2+4 ...

3
a
1 — —
703

The modulus of the initial coordinates can be estimated above
very simply, although rather crudely in many cases, by the
quantity a(l 4 ¢). For the modulus of the components of
velocity, divided by the mean motion, it is possible to write
for the overstated estimate the form

Zo

SZa(l -I—e—l—%eZ)

It is necessary to note that this estimate will always be
strongly overstated because it is accepted that the sine and
cosine of the eccentric anomaly are transformed simultane-
ously as unity, as are the vectors P and Q, and the heliocentric
distance 7, has a minimum value. As a result it is possible to
write the overstated estimate of the error of the approximate
solution as

r— 7

< (e + 9 E (ut + w)s]

for orbits with small eccentricities. Simultaneously, the ap-
plication of this estimate to all coordinates finally gives a very
exaggerated estimate of the distance error.

The procedure for the calculations of the heliocentric co-
ordinates is very simple and does not require much time. If
the usual search ephemeris is calculated for moments of time
close to the time of opposition, then, for the initial moment, it
is necessary to take three or four of the usual moments being
assumed. (This is essentially sufficient because, in the
estimate of the error, it is always an important factor, depend-
ing on time.) Here, time ¢ does not exceed 30. If the mean
motion is close to 800" per day, then the factor in the estimate
of the error containing time does not exceed 0.0078. If the

“first of the ephemeris moments is taken for the initial

moment, then this same factor reaches the magnitude 0.0227
for the sixth moment.

After the calculation of the direction cosines, it is necessary
to determine the initial coordinates and their derivatives with
respect to time, divided by the mean motion, by the usual
formulas.

If a larger ephemeris is calculated and accuracy is needed
in the fourth decimal, then for moderate eccentricity it is
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necessary to calculate the coordinates and components of velocity over 50-70 days by accurate formulas and to fill out scales of

each moment in the ephemeris by the approximate formulas.

The calculation of the coordinates by the approximate formulas does riot have to be explained.
We shall give examples of comparison ephemerides calculated according to the accurate and approximate formulas (Tables

1-4).
Table 1 Planet 807, Tseraskia (1953)
June 12 June 22 July 2 July 12 July 22 August 1
z 0.8246 0.9134 1.001 1.088 1.174 1.259
x 0.8246 0.9133 1.001 1.088 1.173 1.257
y —2.949 —2.922 —2.892 —2.859 —2.825 —2.787
5 —2.949 —2.921 —2.891 —2.857 —2.820 —2.781
z —0.9578 —0.9636 —0.9684 —0.9725 —0.9756 —0.9779
Z —0.9578 —0.9635 —0.9681 —0.9717 —0.9742 —0.9757
Table 2 Planet 1031, Arktika (1953)
Nov. 29 Deec. 9 Dec. 19 Dec. 29 Jan. 8 Jan. 18
z 0.3689 0.2703 0.1714 0.07217 —0.02703 —0.1262
x 0.3689 0.2703 0.1714 0.07227 —0.02688 —0.1260
y 2.907 2.915 2.920 2.921 2.919 2.914
¥ 2.907 2.915 2.920 2.922 2.921 2.917
2z 0.5694 0.5512 0.5323 0.5128 0.4928 0.4722
z 0.5694 0.5512 0.5324 0.5130 0.4931 0.4727

In both examples, the first point is taken for the initial point in order to have less favorable conditions of accuracy.
In spite of this, the errors seldom exceed several units in the fourth decimal, and only at separate points at the end of the
ephemeris do the errors reach one or two units in the third decimal.

Table 3 Planet 881, Afina (1956)

Nov. 3 Nov. 13 Nov. 23 Dec. 3 Dec. 13 Dec. 23
z 0.2477 0.1567 0.06541 —0.02592 —0.1172 —0.2083
% 0.2476 0.1566 0.06541 —0.02592 —~0.1172 —0.2083
y 2.530 2.563 2.592 2.618 2.641 2.661
¥y 2.528 2.562 2.592 2.618 2.639 2.655
z 1.264 1.254 1.243 1.230 1.215 1.199
4 1.263 1.254 1.243 1.229 1.214 1.196

Here, the third point is taken for the initial point, which decreases errors. The error reached six units in the fourth decimal
in only one case. Thus, it is possible to say that at almost all points the approximate formulas give four decimals, with some

uncertainty in the fourth decimal at remote points.

Table 4 Planet 1031, Arktika (1953-1954)

Nov. 29 Deec. 9 Dee. 19 Dee. 29 Jan. 8 Jan. 18
x 0.3689 0.2703 0.1714 0.07217 —0.02703 —0.1262
x 0.3690 0.2703 0.1714 0.07222 —0.02697 —0.1281
y 2.907 2.915 2.920 2.921 2.919 2.914
3’ 2.907 2.915 2.920 2.921(1) 2.920 2.915
z 0.5694 0.5512 0.5323 0.5128 0.4928 0.4722
z 0.5695 0.5512 0.5323 0.5129 0.4929 0.4724

Here, for the initial point, we take the third ephemeris point
because this limits the error. We limit ourselves to an ac-
curacy of four decimals. A comparison with the second ex-
ample shows that the choice of the initial point close to the
middle of the ephemeris gives results noticeably better than
in the case of the choice of the initial point at the beginning of
the ephemeris. :

The approximate solution considered has the same period
as the exact solution.

3 First Refinement of the Simplest Approximate
Solution

Although estimates of the error of the approximate solution
would be noticeably overstated, nevertheless, it is quite
possible to show that the error of this method has the order
of the eccentricity multiplied by the square of the product of
time by the mean motion. Since the mean motion must be
expressed in radians per day in such an estimate, the product
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wl is a small number until ¢ becomes very great. If the ec-
centricity does not appear as a small number, and if the in-
terval of time from the beginning up to the given moment
is great, then the method turns out to be insufficiently accu-
rate, even for a search ephemeris. For such cases, it is de-
sirable to make the ephemeris more accurate, not passing on
to accurate formulas. We shall also consider such a refine-
ment. The method gives an inadequate approximation be-
cause we replaced 73 by ¢ ~? in the differential equations, even
though a3 also did not appear as the mean value of the quan-
tity 3. Therefore, the simplest improvement of the ap-
proximate solution lies in the fact that the nonlinear factor r—3
in the differential equations is replaced by

b3 =031 — )2 =qa3(1 4 e 4 2Pt + .. )

We obtain a system of differential equations, which again are
solved independently of each other:

dz dy
= 2 = — 2 =
dt2+ui 0 dt2+vy 0
9
d’ 4% =0 2= p(l — e¥)-u

dt?

The second approximate solution which, on the average, will be
considered to be more exact has the form

z

i

o .
o cosvt + — sinyt
1

<
I

Yo .
= 9o cosvt + o sinvt
v

xR

Z .
= 2 cosvt 4+ — sinyt
v

We assume also that the new approximate solution is an ad-
ditional simpler approximate solution, which is applied when
the initial distance (heliocentric) has a magnitude close to the
magnitude of the semimajor axis of the ellipse. The second
simpler solution must differ essentially from the first in that it
has a period differing from the period of the exact solution.
Therefore, such an approximation cannot be applied for the
whole orbit, because, after the termination of the period, the
approximate solution does not give the initial point of the
trajectory. Even on the average, it must give a better ap-
proximation for the trajectory as a whole. We investigate at
somewhat greater length the second simpler approximation.
We denote

@ Cz’ - @

v v
i_t (1 — e2)s/4
v B

The elimination of time gives the equation of the plane of the
orbit in the form

z y 2
o Yo 2| =0
c. ¢,/ c/

The plane of the orbit coincides with the plane of the exact
orbit because the elements of the determinant C.’, C,/, C.’/
differ from the elements C, C,, C. by the presence of the factor
(1 — €34 generally for all three elements. Both approxi-
mate orbits are in contact at the initial point with the exact
orbit. The dimensions of the second approximate ellipse are
different from the dimensions of the first. It is seen from a
comparison of »? and u? that this difference is the order of the
square of the eccentricity. For an estimate of the error of the
-second approximate formula, we again make use of the ex-
pansion of the heliocentric coordinates in series according to
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powers of time. We limit ourselves to the first two terms,
and we shall compare it with the expansion of the trigono-
metric functions in series, breaking off the latter after writing
the first two terms. With the terms taken we obtain

1 a* 1.
rxr— = —2—252 <I/2 et ,11.27?;)(1'0—‘— ‘3—151&0)

Analogous expressions can be written for the remaining coor-
dinates. We shall expand the expression for »2 by powers of e
and restrict ourselves to the first two terms. We make use of
the inequality

ad/re® > 1 — 3e + 62

Following from the fact that the upper limit for ry is a(1 + ¢),
we obtain the following estimate of the error:

l — 2] 1 t2u? <3e 9 e2> 2 + ~1—5cot

-2 « 3
which is suitable, finally, for smaller values of the eccentricity.
An error of the order of the eccentricity multiplied by the
square of tu is obtained here also. The last quantity does not
exceed 0.02 for the majority of small planets if ¢ does not
exceed 30 days. If the expression for u in terms of a is taken
into account, it is possible to show that the error is inversely
proportional to the square of the semimajor axis of the Kepler-
ian ellipse, because a is contained in the latter factor. The
error of the second formula is smaller than the error of the
first by a magnitude of the order of the square of the ec-
centricity, whereas both errors are the order of the first power
of the eccentricity.

4 Second Refinement of the First Approximate
Yalue

The first approximate value is obtained with an error of the
order of the first power of the eccentricity, which also was
shown in the estimate of the error. As indicated in the pre-
ceding paragraph, the refinement of the mean value does not
give an actual improvement because, in the expansion of the
partial average quantity, terms of the order of the eccentricity
are rejected.

The natural refinement of the first approximation can be
considered as the refinement that would be obtained if, in the
replacement of the cube of the inverse distance, we take into
account also such terms containing the first power of the
eccentricity, that is, if we make use of the approximate
equality (2):

1

1
= 5(1 + 3e cosM)

It is possible to show that the approximation obtained will
contain an error of the order of the square of the eccentricity.
After the indicated replacements, we obtain the approximate
equation _

dx | kx

aE + p (1 +3ecosM) =0
and two others for the coordinates y and z which have exactly
the same form. The problem is simplified because a de-
coupled system of differential equations of the second order
is obtained, but this simplification is inadequate because the
equations contain variable coefficients. We shall apply the
simplification of the system. We copy the differential equa-
tion in the form

d2z/dt? + uir = —3eur cosM

and on the right sides we replace the coordinates by their ex-
pressions from the first approximation. Since the right sides
contain a factor of the eccentricity, and the values of the
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Table 5 Planet 1031, Arktika (1953-1954)

Nov. 29 Dec. 9

Deec. 19 Dec. 29 Jan. 8 Jan. 18
z 0.36890 0.27029 0.17135 0.07217 —0.02703 —0.12618
x 0.36895 0.27030 0.17135 0.07222 —0.02696 —0.12614
Z 0.36891 0.27029 0.17135 0.07221 —0.02698 —0.12617
Y 2.9069 2.9149 2.9197 2.9211 2.9193 2.9141
¥ 2.9073 2.9151 2.9197 2.9213 2.9198 2.9153
g 2.9068 2.9150 2.9197 2.9212 2.9193 2.9141
2 0.56938 0.55115 0.53230 0.51283 0.49279 0.47220
Z 0.56947 0.55118 0.53230 0.51287 0.49290 0.47241
g 0.56938 0.55116 0.53230 0.51285 0.49281 0.47220
coordinates in the result of the averaging are obtained with T =T+ eR,(7) 7 =7+ eR,(1) 2 =2+ eR.(7)

an error of the order of the eccentricity, then the error from
the proposed transformations will have the order of the
square of the eccentricity, that is, the same order as the error
due to replacement of the cube of the inverse distance. After
this we obtain a decoupled system of linear nonhomogeneous
differential equations having the form

d2e . . Ts .
7 + wxr = —3cu? | 2, cosp.r+; sin w7 ) cosM

T=10—1

where , is the initial moment.

The equations for the other two coordinates are constructed
exactly the same way. If M, designates the mean anomaly at
the initial moment, then we have M = M, 4 ur. To take
this expression into account, we transcribe the right part of
the differential equation into the form

—Zeu?[(zs cosM, — C, sinM,) +
(xs cosM, + C. sinM ) cos2ur +
(C. cosM, — z, sinM,) sin2ur]

with analogous expressions for the other two equations. The
quantities ./ u, etc., are designated by C., Cy, Ca.

We obtain the solution of the differential equations by
known methods, satisfying the initial conditions, in the form

z =T — Je(x, cosM, — C, sinM,) +
e(x, cosM, + C, sinM,) cosur +
e(z, sinM, — C, cos M) sinur +
Ye(x, cosM, + C, sinM,) cos2ur +
1e(C, cosM, — z, sinM,) sin2ur

Analogous expressions are found for y and z. In these expres-
sions 7, 2 denote the solutions of the first approximation, that
is, those which are obtained in the foregoing as a result of the
partial averages in the differential equations.

We introduce the notations

2, cosM, — C, sinM, = 2ax
zs cosM, + O, sinM, = 2.
z, sinM, — C, cosM; = 2.

and analogously for a;, 8y, Yy, @ B+ V- The calculation of
the quantities «, 8, v with the values of z, y, 2 is easily con-
trolled, for example, according to the formulas

4.7 + 4y, = 22 + C2
ax(Cg;Z + xﬁ) + 61(012 - xsz) + 'Y:c'zczx.s =0

The first is evident. The second is obtained by the elimina-
- tion of cosM, and sinM, from the equalities determining «, 8,

v.
After the calculations of the quantities «, 3, v, the solution
of the equations can be written in the form

where R.(7), R,(7), and R.(7) are determined by the formulas

R.(7) = —30, + (Ba, — B.) cosur + 27, sinur +
Bz cos2uT — 7y, sin2ur

where R, and R, are determined by analogous formulas.

We consider an example of the application of the written
formulas to the calculation of an ephemeris for the planet
Arktika (Table 5). We reduce the values of the coordinates
calculated according to the exact formulas, the approximate
values Z, 7, z, and the refined values with errors of the order
of the square of the eccentricity. The initial point is close to
the middle (the third). ,

Here z is exact (calculated approximately but according to
exact formulas), and %, 4, z are refined with errors of the order
of the square of the eccentricity.

5 Order of Calculations and the Summary
of Formulas

If the usual ephemeris is required for six moments, then the
rectangular heliocentric coordinates and their derivatives are
calculated, according to known formulas, divided by the mean
motion according to formulas of the form

C. =2 = % (—qP, sinBs + bQ. cosEy)
® T3
For (', and C, there are analogous formulas. P and @ are the
projection coefficients. In making use of the approximate
formulas, it is better to consider the ephemeris for five
moments.

If the ephemeris is calculated for a greater number of epochs
(for example, in the calculation of perturbed motion by the
method of Encke), then in the formulas mentioned it is neces-
sary to calculate the coordinates and their derivatives for
equidistant epochs with steps of 40 days. If the ephemeris is
needed with the usual step of 10 days, then the coordinates
are calculated according to the approximated formula

2(f) = a, cosur + C. sinpr T=1t—1,
where ¢, is the initial moment, in particular for s = 3. The
formulas for the remaining coordinates are analogous. The
refinement, if it is required, is made according to the formulas
of Sec. 4.

—Submiited April 11, 1968
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Reviewer’s Comment

Ephemerides for unperturbed elliptic motion are generally
computed from the exact solution of the equations of motion
via Kepler’s equation. In hisbook on orbit determination (1),
Dubyago describes a method of computing ephemerides based
directly on numerical integration of the unperturbed two-body
equations of motion. Shechigolev’s paper discusses a computa-
tional method for obtaining an approximate solution to the
two-body equations of motion which is much simpler than the
other two methods.

Shehigolev replaces the factor 1/r3 in the equations of mo- -

tion by its expected value. He proposes several different
methods for determining this expected value.

This substitution linearizes and decouples the equations
of motion, permitting an analytic solution to be obtained.
Several refinements of this technique are discussed and ap-
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plied to minor planet orbits.

The methods used by Shchigolev would probably be most
useful for computing search ephemerides for minor planets
and comets where great precision is not required. They
permit the rapid calculation of an ephemeris by a desk ealcu-
lator when a digital computer is not available. His methods
have also been applied to space vehicle orbit transfer compu-
tations (2,3).

—FREDERICK T. SMITH
The RAND Corporation
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Thermodynamic Functions of Monatomic and Diatomic Gases
Over a Wide Temperature Range. III. Nitrogen Atoms,
Nitrogen Molecules, and Nitric Oxide in the Ideal State up to
20,000°K, V. 8. Yungman, L. V. Gurvich, V. A, Kvlividze, E. A.
Prozorovskii, and N. P. Rtishcheva, pp. 1073-1077.

The present paper describes the calculation of the thermo-
dynamie functions (®r*, Sy%, Hs* — Hy®) of N, N;, and NO
in the ideal state at 1 atm pressure between 293.15° and 20,000°K,
by methods deseribed previously. Egquilibrium eonstants K, for
dissociation into monatomic gases have also been calculated for
N, and NO.

Summary:

1 A selection has been made of the most reliable values of the
molecular constants of N, N3, and NO necessary for the accurate
calculation of the thermodynamic functions of these gases.

2 The thermodynamic functions of the gases N, N, and NO in
the ideal state at 1 atm pressure between 293.15° and 20,000°K
have been calculated by direct summation over the energy levels
on the BESM of the USSR Academy of Sciences.

3 The dissociation constants of N, and NO between 293.15°
and 20,000°K have been calculated.

Isotope-Exchange Method for Measuring Vapor Pressures and
Diffusion Coefficients. III. Treatment of Experimental Data,
V. L. Lozgachev, pp. 1084-1090.

Summary: A procedure has been developed for the determination
of constants in the solution of the diffusion equation for isotope
exchange through the gaseous phase in v- and g-radiation measure-
ments. Equations have been found which make it possible to
find from one experimental curve, plotted from the start of the
process up to the steady state, the rate of evaporation no, the
diffusion coefficient D, and the thickness of the exchange layer
5. A computation formula is proposed as well as a method for
the experimental determination of the condensation coefficient .

Theory of Electrical Transport. II. Multicomponent Metallic
Systems, D. K. Belashchenko and B. S. Bokshtein, pp. 1099-
1101.

The previous paper in this series applied the thermodynamies of
irreversible processes to the diffusion of the components of a
binary metallic alloy when a direct current is passed through it.
It is useful to generalize these results to multicomponent metallic
systems. The present paper concerns a three-component system,
agsuming for simplicity that the partial volumes of the com-
ponents are equal.

Oxidation-Reduction Kinetics of Hydrogen, Oxygen, and a
Stoichiometric Oxygen-Hydrogen Mixture at a Platinum Elec-
trode in Electrolyte Solutions, K. I. Rozental’ and V. I. Vese-
lovskii, pp. 1114-1118.

It has been shown in our laboratories that the oxidizing and
reducing components (hydroxyl radicals, hydrogen atoms, O,, H,
and Hy0, molecules), resulting from the radiolysis of water,
produce characteristic electrochemical processes at the electrode.
When this oceurs, the electrode potential may aequire any value
between the potentials of the hydrogen and oxygen electrodes,
depending on the properties of the electrode metal, its reaction
with theradiolysis products, its adsorption capacity with respect to
them, and the rate of ionization of the given substance at the
electrode. Therefore, an investigation of the kinetics of the
electrochemical interaction between oxygen and hydrogen on
metal electrodes in electrolyte solutions acquires an additional
interest.

Earlier investigations show that the catalysis of the oxidation
of oxygen-hydrogen mixtures in electrolyte solutions is determined
by the electrochemical properties of the catalyst and the electrode
potential.

In our studies (by anodic polarography) of the oxidation and
reduction of gaseous H,-O, mixtures on a platinum electrode in
electrolyte solutions, it has been found that the effectiveness of
the process depends, to a large extent, upon the potential of the
electrode, nature of the anion, and the pH of the solution.

The method employed here makes it possible to measure
directly, over a wide range of potentials applied by polarization
of the Pt electrode (0-1.6 v), the true rates of the oxidation of



